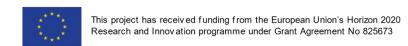

HIV molecular epidemiology and new treatment strategies in Russia and Eastern Europe: results of the research in CARE

Anastasia Antonova, Gamaleya Institute

Francesco Saladini, University of Siena

Anders Sönnerborg, Karolinska Institutet – Karolinska University Hospital



CARE - HIV-1 VIROLOGY RESEARCH

Francesco Saladini, PhD
Department of Medical Biotechnologies
University of Siena, Italy

CARE WP4 background information (HIV-1 virology)

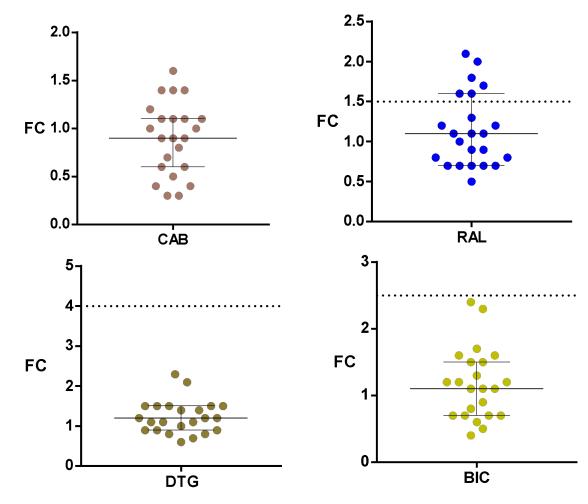
- Integrase strand inhibitors (INSTIs) are the mainstay of antiretroviral therapy (ART)
 - First-generation raltegravir (RAL) and elvitegravir (EVG)
 - Second-generation dolutegravir (DTG) and bictegravir (BIC), more potent and less affected by drug resistance
 - Cabotegravir (CAB), second-generation and long-acting formulation
- WHO recommends replacement of efavirenz (EFV) with DTG in first-line therapy,
 DTG roll-out has thus been started in Russia
- The HIV-1 epidemic in Russia is dominated by the sub-subtype A6
- There are no data on the susceptibility of A6 HIV-1 to DTG, however there has been a signal of A6 being associated with failure to respond to CAB based therapy in recent trials (Cutrell et al., AIDS 2021)

CARE WP4 planned activities (HIV-1 virology)

Analysis of the mechanisms of INSTI drug resistance in the highly prevalent HIV-1 sub-subtype A6, including the role of natural polymorphisms and off-target mechanisms based on mutations outside the integrase gene

 Evaluation of the in vitro susceptibility and the genetic barrier to resistance to INSTIs in A6 isolates

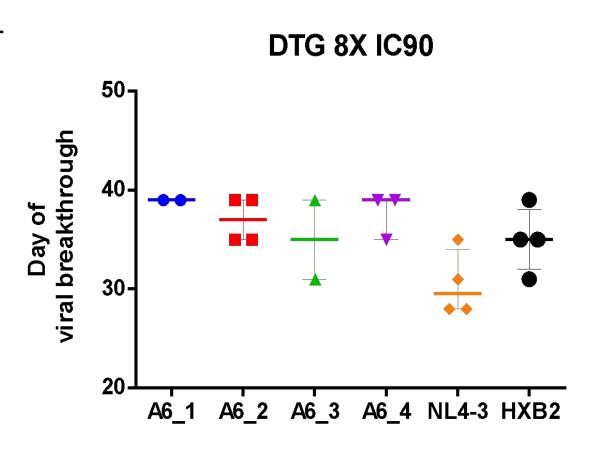
 Creation of a molecular clone with near full-length A6 genome for further analysis on drug resistance


In vitro susceptibility to INSTIs in A6 isolates

- We created **23 NL4-3 based recombinant viruses** harboring clinically derived **sub-subtype A6 integrase** coding region from samples collected at the HIV and Hepatitis Monitoring Laboratory (HHML) of Siena (n. 8), the Institute of Virology of Cologne (n. 2) and the Gamaleya Center of Moscow (n. 13)
- None of the 23 A6 sequences harbored major INSTI resistance associated mutations
- 22/23 (96%) sequences of samples had L74I variant
 - Consensus aminoacid in sub-subtype A6 and weakly selected under INSTI therapy
 - Signature mutation in the recent CAB treatment failures

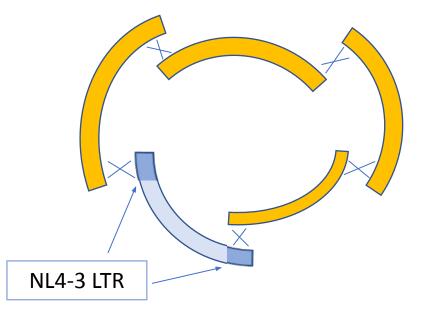
In vitro susceptibility to INSTIs in A6 isolates

- In vitro susceptibility to raltegravir (RAL), dolutegravir (DTG), bictegravir (BIC) and cabotegravir (CAB) determined as fold-change (FC) with respect to the wild-type NL4-3 strain
- All samples fully susceptible to DTG and BIC
- Susceptibility to CAB comparable to that of NL4-3 virus
- 6/23 viruses with minimally decreased susceptibility to RAL



FC cut-offs (dotted line): RAL 1.5 – biological; DTG lower 4, upper 13 – clinical; BIC lower 2.5, upper 10 – clinical, estimated; CAB not available)

In vitro genetic barrier to resistance to INSTIs in A6 isolates


- MT-2 cells infected with A6 recombinant viruses (A6_1 to A6_4) or reference NL4-3 and HXB2 viruses and exposed to DTG at 8X IC₉₀ value as calculated with NL4-3 virus
- Viral breakthrough monitored every 48/72 hours to detect virus-induced cytopathic effect (syncytia)
- No significant differences observed between A6 recombinant viruses and NL4-3/HXB2 strains
- No emergent mutations detected at viral breakthrough
- Further experiments ongoing with higher drug doses (16X and 32X IC_{on})

Creation of a molecular clone with near full-length A6 genome for further analysis on drug resistance

Amplicons from A6 genome

pNL4-3 backbone

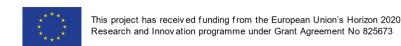
- Amplification of four overlapping PCR fragments from viral RNA spanning from the whole GAG to ENV coding regions
- Assembly with the NL4-3 vector including the LTR region through homologous recombination carried out by Gibson assembly method
- Identification of replication competent clones after transfection in 293 cells and propagation in CD4+ T-cell lines
- Final assembly still ongoing

CARE WP4 (HIV-1 virology) – Summary

• A6 integrase appears to be fully susceptible to INSTIs, except for few viruses showing minimal reduction in RAL susceptibility

- Virus breakthrough in in vitro selection experiments also does not appear to differ substantially between A6 and the reference subtype B
 - Further experiments in progress, emergent resistance at higher drug dosing still to be evaluated

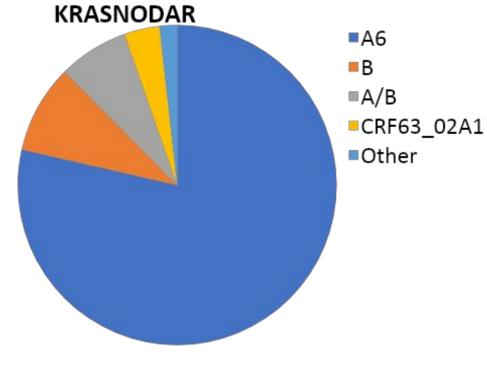
- The creation of a full-length A6 molecular clone is in progress
 - Valuable to better investigate resistance not only to INSTIs but also to other drugs as well as to define the synergistic effect of drug combinations



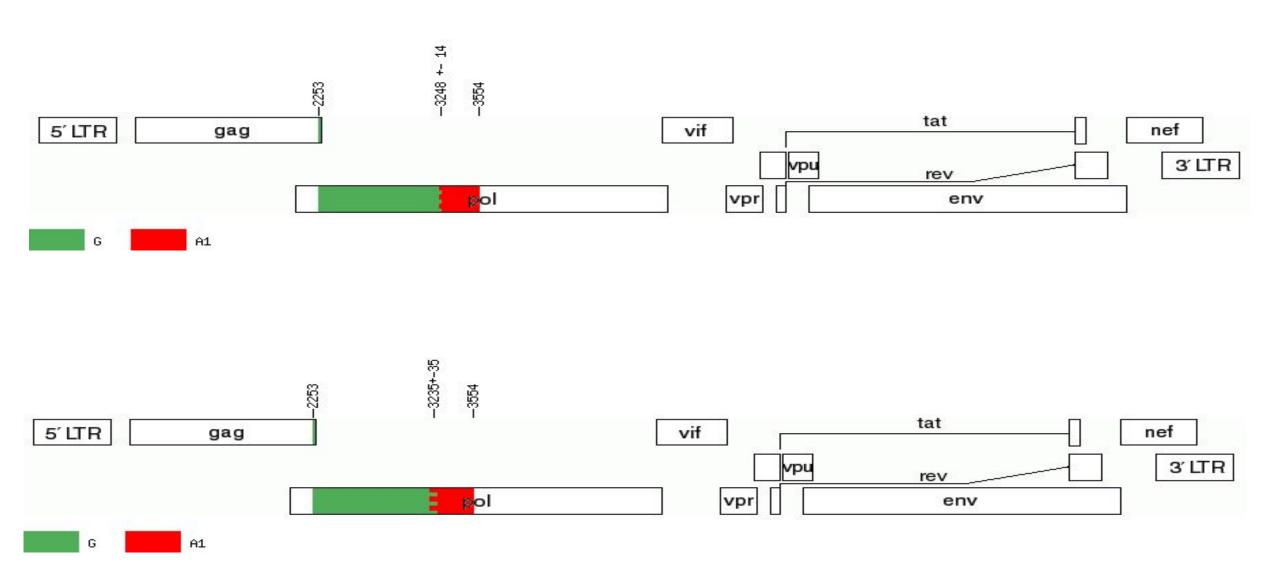
CARE - HIV-1 VIROLOGY RESEARCH IN RUSSIA

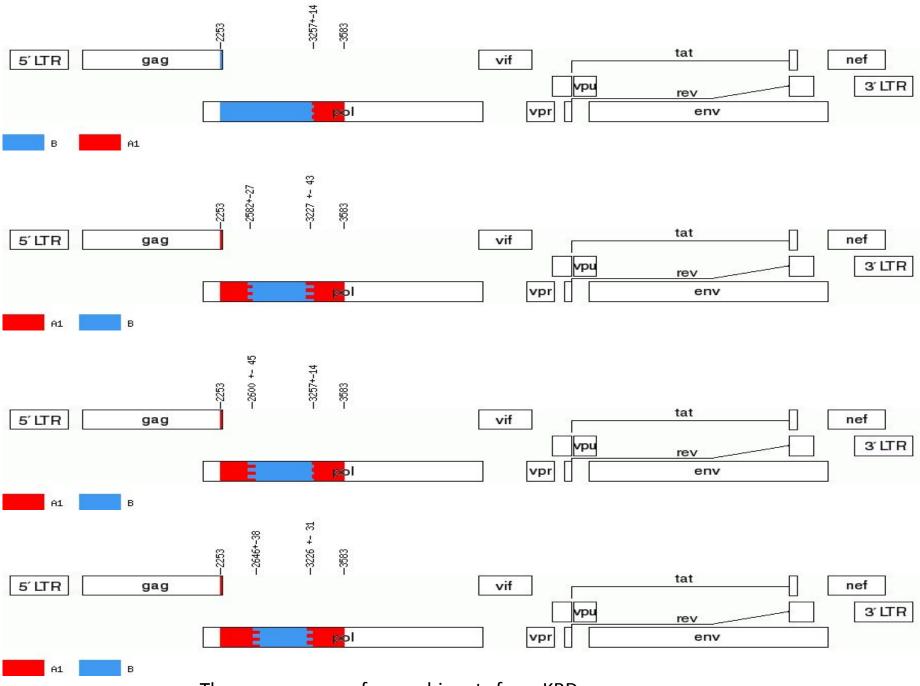
Anastasia Antonova, Junior researcher Gamaleya National research center of epidemiology and microbiology





HIV molecular epidemiology and new treatment strategies in Russia




$$n = 56$$

The genome map of recombinants from MSK

The genome nap of recombinants from KRD

Pretreatment Drug Resistance (PDR)

MSK

Proportion of sequences with SDRMs

Resistance Category	No. Analyzed	No. Containing SDRM	%
Sequences with any SDRM	356	11	3.1%
PR Sequences with any PI SDRM	356	2	0.6%
RT Sequences with any NRTI SDRM	351	2	0.6%
RT Sequences with any NNRTI SDRM	351	9	2.6%
RT Sequences with any NRTI + any NNRTI SDRM	351	1	0.3%
PRRT Sequences with any NRTI + any NNRTI + any PI SDRM	351	0	0.0%

KRD

Proportion of sequences with SDRMs

Resistance Category	No. Analyzed	No. Containing SDRM	%
Sequences with any SDRM	56	7	12.5%
PR Sequences with any PI SDRM	53	0	0.0%
RT Sequences with any NRTI SDRM	56	4	7.1%
RT Sequences with any NNRTI SDRM	56	6	10.7%
RT Sequences with any NRTI + any NNRTI SDRM	56	3	5.4%
PRRT Sequences with any NRTI + any NNRTI + any PI SDRM	53	0	0.0%

Structure of PDR

Sequences with SDRMs

Sequence Header	NRTI SDRMs	N NRTI SDRMs	PISDRMs
442373	None	K103N, Y181C	None
442382	None	K103N	None
488710	None	K101E	None
486866	None	K103N	L24I
486921	K65R, Y115F, M184V	Y181C, G190S	None
494609	None	None	M461
494610	None	K103N	None
504122	None	K103N	None
499797	None	Y188L	None
499777	None	V106M	None
508614	T69D	None	None

Sequence Header	NRTI SDRMs	NNRTI SDRMs	PISDRMs
KRD0002	None	K103N	None
KRD0008	D67N, K70E, M184I	K101E, Y181C	None
KRD 000 9	None	K103S	None
KRD 002 1	K65R, M184V	K101E, Y188HL	None
KRD0030	None	K103N	None
KRD 0 0 5 6	M41L	None	None
KRD 0 0 5 9	K65R, Y115F, M184V	G190S	None

Three recommended options for the preferred first-line ART regimen for adults in the Russian Federation:

EFV + 3TC (or FTC) + TDF

K103N, Y181C

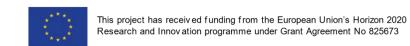
M184V/I

K65R

DTG + 3TC (or FTC) + TDF

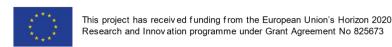
M184V/I


K65R


VM-1500 + 3TC (or FTC) + TDF

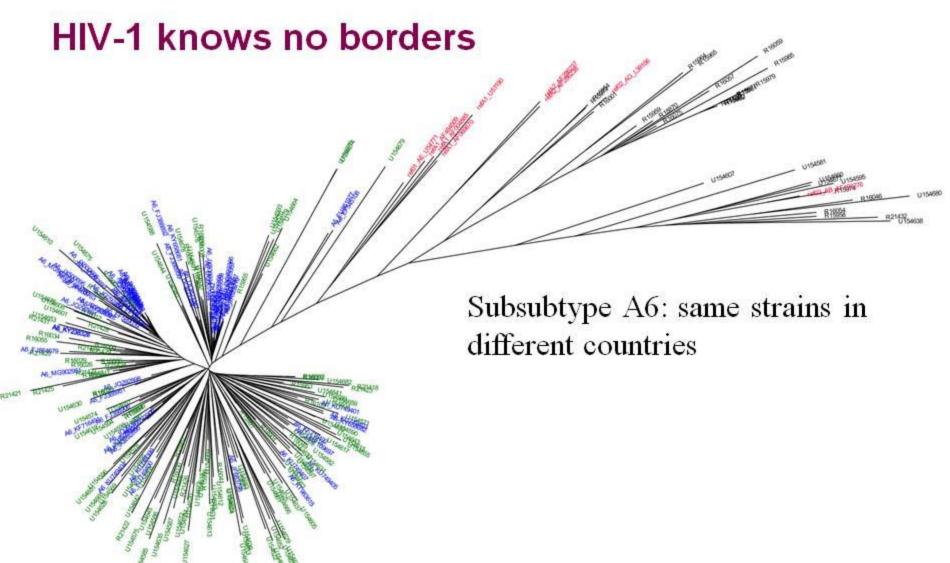
M184V/I

K65R



FUTURE PERSPECTIVES, VIROLOGY

Anders Sönnerborg, MD PhD
Divisions of Infectious Diseases and Clinical Microbiology
Karolinska Institutet / Karolinska University Hospital



Clinical/translational HIV-1 virology research over the borders, WP4

- Clinical HIV-1 cohorts/databases
- Sharing technical knowledge
- Molecular epidemiology through sharing viral sequences
- Basic and clinically oriented virology
- Educational knowledge transfer

Future perspectives - ongoing

- Analyse pooled clinical and viral sequence data from all countries
 - → molecular epidemiology
 - → pretreatment drug resistance
 - →any drug resistance in failing patients
- Finalizing experimental virology
 - → Final insights in the geno- and phenotypes of the A6 strains

Future perspectives – continuation of the collaborations

- A common infrastructure has been established.
- Logistics for exchange of knowledge and technical skills are in place
- Insights in partners knowledge and skills have been obtained
- A platform for continuation of surveillance of HIV-1 molecular epidemiology and drug resistance is established
- When new HIV-1 variants (or other viruses) emerge the collaboration will facilitate a rapid adaptation

Thanks for your interest

CARE Consortium

Denmark

REGION HOVEDSTADEN/CHIP

Georgia

INFECTIOUS DISEASES, AIDS AND CLINICAL IMMUNOLOGY RESEARCH CENTER

Germany

BBBHARD KARLS UNIVERSITAET TUBINGEN

FORSCHUNGSZENTRUM BORSTEL

KUNIKUM DERUNIVERSITÄT ZUKÖLN

Italy

EURESIST NETWORK

UNIVERSITA' DEGLI STUDI DI SIBNA

Lithuania

MESOJI ISTALGA MLNIAUS UNIVERSITETO LIGONINE SANTAROS KUNIKOS

Moldova

INSTITUTIA MEDICO-SANITARA PUBLICA - INSTITUTUL DE FTIZIOPNEUMOLOGIE "CHIRIL DRAGANIUC"

Russian Federation

FEDERAL RESEARCH CENTRE FOR EPIDEMIOLOGY AND MICROELOLOGY NAMED AFTER THE HONORARY ACADEMICIAN N.F. GAMALEYA OF THE MINISTRY OF HEALTH

FEDERAL STATE INSTITUTION SAINT PETERSBURG RESEARCH INSTITUTE OF PHTH 9 OPULMONOLOGY OF THE FEDERAL AGENCY FOR HIGH TECHNOLOGY MEDICAL AID

Sweden

KAROLINSKA INSTITUTET

United Kingdom

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

Ukraine

STATE INSTITUTION PUBLIC HEALTH CENTER OF THE MINISTRY OF HEALTH OF UKRAINE

